skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winokur, Agnes"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fentanyl analogues and their positional isomers have similar chemical structural configurations making them difficult to identify and differentiate. Gas chromatography coupled to a gas-phase infrared detector (GC-IRD) is a useful and powerful tool for the unambiguous identification of fentanyl compounds where traditional analytical techniques such as gas chromatography–mass spectrometry (GC–MS) offer limited information for this class of compounds. In this study, we demonstrate the utility of GC-IRD and show how this complementary information enables the identification of fentanyl analogues (2- and 3- furanylfentanyl, 2-furanylbenzylfentanyl, croto- nylfentanyl, cyclopropylfentanyl, methoxyacetylfentanyl, carfentanil, meta-fluoroisobutyryl fentanyl, para- fluoroisobutyryl fentanyl and ortho-fluoroisobutyryl fentanyl) when combined with GC–MS data. A description of the operating conditions including how the optimization of GC-IRD parameters can enhance the spectral resolution and unambiguous identification of these fentanyl analogues is presented, for the first time. In par- ticular, the effects of light pipe temperatures, acquisition resolution, the use of a programmed temperature vaporizing (PTV) inlet, and the analytical concentration of the sample were evaluated. A real-world case ex- ncountered in casework and how the implementation of GC- of these challenges in fentanyl differentiation and identification. 
    more » « less